Group 16

Design and Development of Optimized Flow Channels for an Alkaline Membrane Fuel Cell Educational Kit

Advisor/Sponsor: Dr. Juan Ordonez

Oluwafemi Ojo Tristan Walter Terry Grandchamps Trevor Gwisz

Presentation Overview

- Project Goal Statement
- Brief Re-Introduction
- Current Design
- Functional Analysis
- Failure Analysis
- Safety Analysis

Group 16

Slide 2 of 22

- Commercialization
- Plans for the Future

Goal Statement

Deliver a functioning educational alkaline membrane fuel cell kit that demonstrates the effects of flow configurations on the fuel cell's performance by the end of spring 2017 semester"

Group 16 Slide 3 of 22

Re-Introduction to AMFC Operation

- Converts chemical energy into electric potential energy
- Requires an electrolyte solution, hydrogen gas, and oxygen gas for operation
- Generates pure water and electricity
- No greenhouse gas emitted

Group 16

Slide 4 of 22

Fig. 1: Fuel Cell Operation

Current Set Up

- 200 mL Electrolysis Cylinders
- 1/8 in diameter exit
- 0.05" Wire to 9V battery
 - Producing a flow rate of 0.2678L/hr
 - Fluid Velocity of 0.036m/s
 - Very low feeding pressure and flow rate
 - Not optimal to study thermal fluids system

Fig. 2a: Electrolysis Cylinder

Fig. 2b: Electrolysis Operation

Tristan Walter Design and Development of AMFC Kit

Group 16 Slide 5 of 22

Parallel Configuration

- Lowest pressure drop
 - No minor losses
 - Multi-path design
- Does not require a high flow rate for operation
- Current max voltage 0.561V produced
 - Ideal 1.23V

Group 16

Slide 6 of 22

Fig. 3: Parallel Configuration

Tristan Walter Design and Development of AMFC Kit

Serpentine Configuration

Higher pressure drop compared to parallel

- Minor losses-22 bends in current design
- One path continuous flow
- Steady contraction loss

Group 16

Slide 7 of 22

Higher flow rate desired for optimal functionality

Fig. 4: CAD Serpentine Configuration

Tristan Walter Design and Development of AMFC Kit

Interdigitated Configuration

- Highest Pressure drop compared to parallel and serpentine design
 - Minor losses-22 bends
 - Dead Ends

Group 16

Slide 8 of 22

- Forces fluid to lateral diffuse over channel walls for high diffusion rate
- Potentially flooding
- High pressure drop
- Higher flow rate required for optimal functionality

* * * * *	l
	l

Fig. 5a: Interdigitated Configuration flow

Dead

Fluid Flow	
Fig. 5b: CAD Interdigitated	d Configuration
End	Tristan Wal

Design and Development of AMFC Kit

Effects of Low Flow Rate on High Pressure Drop Configurations

- Heat distribution and Heat transfer
 - Fluid temperature will dissipate quicker through system
 - Max Heat ≈393.15 K (Shown in Fig. 6 in red)
 - Why optimize?
 - Higher flow rates allow for higher heat transfer rates
 - High current density

Fig. 6: Thermal Imaging Interdigitated (left) Serpentine (Right)

Tristan Walter Design and Development of AMFC Kit

Group 16 Slide 9 of 22

Effects of Low Flow Rate on High Pressure Drop Configurations

- Low feeding pressure
 - Thermal fluids system has energy losses Head loss
 - Cannot overcome these losses to allow for fluids to move through system
- Low Reynolds number

Group 16

Slide 10 of 22

- Current set up produces RE=0.42
- No empirical formula to find appropriate friction factor
- Cannot study pressure drop in the thermal fluid system

$$f = \frac{24}{\text{Re}} (1 - 1.3553a + 1.9467a^2 - 1.7012a^3 + 0.9564a^4 - 0.2537a^5)$$
 Eqn. 2: R.K. Shah and A.L. London friction factor

Tristan Walter Design and Development of AMFC Kit

Eqn. 1: Reynolds Number

 $\underline{\rho}vD$

Analysis

- How much feeding pressure is required for a respectable flow rate?
 - New velocity selected to received respected RE
 - 6.0 m/s results in RE = 56.45
 - R.K. Shah and A.L. London equation used for f
 - Geankoplis table
 - Geankoplis friction loss
 - ▶ △P=0.1663psi

Table 1: Geankoplis table of friction losses for non-tubulent flow

Re	50	100	200	400	1000	Turbulent
K _f	17	7	2.5	1.2	0.85	0.75

$$\sum F = \frac{V^2}{2} \left(\frac{4fL}{D_h} + K_f \right)$$

 ΔP

Eqn. 3: Geankoplis friction loss (Energy Balance)

Tristan Walter Design and Development of AMFC Kit

Group 16 Slide 11 of 22

Results

- New flow rate of 1.2384 * 10⁻⁴ m³/s (Fluid Velocity = 6.0m/s) results in ΔP=0.1663psi for current serpentine design
- Must produce a feeding pressure > 0.1663psi
 - Increase Electrolysis reaction
 - ► Pump

Tristan Walter Design and Development of AMFC Kit

Increasing Pressure and Future Steps

Increasing Electrolysis Reaction

- Add salt to distilled water in cylinders- increases conductivity
- Thicker wire- increases current
- Use larger battery- increases voltage
- Use pressure gage to measure if this pressure is achievable

Pump

Group 16

Slide 13 of 22

- Pump selection will allow for an exact desired flow rate
- Adds more components to system
- Electrolysis method cannot be used

Fig. 7: Pressure Gage used to measure pressure on cylinder

Tristan Walter Design and Development of AMFC Kit

Design for Commercialization

Kit's main use is for educational use

- Easy to disassemble and replace with different flow plates
- Safe design
- Maximize simplicity and reliability of the design
- Transportability
- All parts and directions included

Group 16 Slide 14 of 22

Failure Analysis

Table 2: Failure Analysis for educational kit

#	Name	Failure Mode	Cause	Symptoms and Local Effects Method of De		Symptoms and Local Effects Method of Detection Effect on Sys		Effect on System	Remarks and other Effects
1	End Plates	Oxidation, Warped, Damaged	Corrosion, Poor Thermal Management, Neglect	Reduced Diffusion, Leaking, Poor Water Vapor Management	Visual Inspection	Reduced Power Generation	Could pose a health hazard		
2	Membrane	Reduced efficiency	Carbon Dioxide Poisoning, Overuse	Uneven Current Distribution	Measuring power output	Reduced Power Generation	Requires Replacement		
3	Gas Delivery Tubes	Cracked, Leaking	Dry rot, Loose Connection	Leaking Gas, Reduced Diffusion	Visual Inspection	Reduced Power Generation	Requires Replacement		
4	Electrolysis Components	No Gas Production	Dead Battery, Poor Electrical Connections	No Bubbling	Visual Inspection, Testing Battery	No Power Generation	Requires Replacement		
5	Electrode Sheets	Salt Build Up, Damaged	Carbon Dioxide Poisoning, Misuse	Uneven Current Distribution, Uneven Heat Distribution	Visual Inspection, Power Output	Reduced Power Generation	Requires Replacement		

Safety Analysis

- AMFC operates at max temperatures of 100°C 120°C
- Improving design to make more stable
- Prevent fuel cell from moving during operation

Fig. 8: CAD drawing of fuel cell stand

Group 16

Slide 16 of 22

Fig. 9: CAD drawing of fuel cell in stand

Maximizing Simplicity

- Old design relied on bolts for assembly
- New design assembled with quick release bicycle skewers
- Skewers will be customized in order to fit design

Fig. 10: Current design using bolts

Fig. 11: Quick release skewer

Fig. 12: CAD drawing of new design

Trevor Gwisz Design and Development of AMFC Kit

Group 16 Slide 17 of 22

Maximizing Testing Reliability

- Old Design relied on spliced wires to measure power generation
- Could produce inconsistent measurements
- New Design features integrated connection points to facilitate alligator clips

Fig. 13: Current design wiring system

Group 16

Slide 18 of 22

Fig. 14: CAD drawing of end plate modification

Fig. 15: Alligator clips

Gantt Chart

Meet with Advisor/supervisor 16 days Wed 9/14/16 Wed 10/5/16 Background Research 34 days Wed 9/21/16 Mon 11/7/16 Marke Research 39 days Wed 9/21/16 Mon 11/14/16 Discuss Design Ideas 26 days Wed 9/14/16 Wed 10/19/16 Gain Access to CAPS Laboratory 9 days Mon 10/10/16 Thu 10/20/16 CAD Design 21 days Mon 10/17/16 Mon 11/14/16 Communicating with machine shop 52 days Thu 11/3/16 Fri 1/13/17 Web Design 25 days Wed 10/19/16 Fri 1/22/16 Dorder New parts 49 days Tue 11/1/16 Fri 1/18/16 Follow up meeting with Advisor/Supervisor 5 days Mon 11/14/16 Fri 1/28/17 Fri 1/28/17 Fri 1/28/17 Follow up meeting with Advisor/Supervisor 5 days Mon 11/21/16 Machine New Flow Configuations 5 days Mon 11/21/17 Finalize Kit 13 days Mon 1/21/17 Fri 1/28/17 Finalize Kit 13 days Mon 1/21/17 Communication with Vendor	ask Name 🔻	Duration 💌	Start 🔻	Finish 🔻	7,	/17/16	8/7/16	8/28/16	9/18/16	10/9/16	10/30/16	11/20/16	12/11/16	1/1/17	1/22/17
Background Research 34 days Wed 9/21/16 Mon 11/7/16 Market Research 39 days Wed 9/21/16 Mon 11/14/16 Discuss Design Ideas 26 days Wed 9/14/16 Wed 10/19/16 Gain Access to CAPS Laboratory 9 days Mon 10/1016 Thu 10/20/16 CAD Design 21 days Mon 10/17/16 Mon 11/14/16 Communicating with machine shop 52 days Wed 10/19/16 Fri 1/13/17 Web Design 25 days Wed 10/19/16 Fri 1/22/16 Begin Testing of Existing Design 38 days Wed 10/19/16 Fri 1/29/16 Order New parts 49 days Tue 11/1/16 Fri 1/18/16 Machine New Flow Configuations 5 days Mon 1/2/17 Fri 1/27/17 Components Specifications 7 days Mon 1/16/17 Tue 1/2/17 Finalize Kit 13 days Mon 1/2/17 Fri 2/10/17 Communication with Vendor 30 days Mon 1/2/17 Fri 2/10/17	Meet with Advisor/supervisor	16 days	Wed 9/14/16	Wed 10/5/16											
Market Research 99 days Wed 9/21/16 Mon 11/14/16 Discuss Design Ideas 26 days Wed 9/14/16 Wed 10/19/16 Gain Access to CAPS Laboratory 9 days Mon 10/10/16 Thu 10/20/16 CAD Design 21 days Mon 10/17/16 Mon 11/14/16 Communicating with machine shop 52 days Thu 11/3/16 Fri 1/13/17 Web Design 25 days Wed 10/19/16 Tu 11/22/16 Begin Testing of Existing Design 38 days Wed 10/19/16 Fri 12/21/6 Order New parts 49 days Tu 11/1/16 Fri 11/21/17 Follow up meeting with Advisor/Supervisor 5 days Mon 11/14/16 Fri 11/18/17 Fri 11/18/17 Fri 11/18/17 Components 5 days Mon 11/2/17 Fri 11/21/17 Follow up meeting with Advisor/Supervisor 5 days Mon 11/2/17 Fri 1/22/17 Components 5 days Mon 11/2/17 Fri 1/24/17 Finalize Kit 13 days Mon 1/2/17 Fri 2/10/17 Communication with Vendor 30 days Mon 1/2/17 Fri 2/	Background Research	34 days	Wed 9/21/16	Mon 11/7/16											
Discuss Design Ideas 26 days Wed 9/14/16 Wed 10/19/16 Gain Access to CAPS Laboratory 9 days Mon 10/10/16 Thu 10/20/16 CAD Design 21 days Mon 10/17/16 Mon 11/14/16 Communicating with machine shop 52 days Thu 11/3/16 Fri 1/13/17 Web Design 25 days Wed 10/19/16 Tue 11/22/16 Begin Testing Design 38 days Wed 10/19/16 Fri 1/3/17 Veb Design 38 days Wed 10/19/16 Fri 1/22/16 Order New parts 49 days Tue 11/1/16 Fri 1/6/17 Follow up meeting with Advisor/Supervisor 5 days Mon 10/17 Fri 1/2/17 Follow up meeting with Advisor/Supervisor 5 days Mon 12/17 Fri 1/2/17 Components Specifications 7 days Mon 1/16/17 Tue 1/2/17 Finalize Kit 13 days Mon 1/16/17 Wed 2/1/17 Fri 2/10/17 Communication with Vendor 30 days Mon 1/2/17 Fri 2/10/17	Market Research	39 days	Wed 9/21/16	Mon 11/14/16											
Gain Access to CAPS Laboratory 9 days Mon 10/10/16 Thu 10/20/16 CAD Design 21 days Mon 10/17/16 Mon 11/14/16 Communicating with machine shop 52 days Thu 11/3/16 Fri 1/13/17 Web Design 25 days Wed 10/19/16 Tue 11/22/16 Begin Testing of Existing Design 38 days Wed 10/19/16 Fri 12/9/16 Order New parts 49 days Tue 11/1/16 Fri 11/18/16 Follow up meeting with Advisor/Supervisor 5 days Mon 12/17 Fri 16/17 Follow up meeting with Advisor/Supervisor 5 days Mon 12/17 Fri 12/27/17 Components 5 days Mon 19/17 Fri 12/717 Components Specifications 7 days Mon 11/6/17 Tue 12/2/17 Finalize Kit 13 days Mon 12/17 Fri 2/10/17 Communication with Vendor 30 days Mon 12/17 Fri 2/10/17	Discuss Design Ideas	26 days	Wed 9/14/16	Wed 10/19/16											
CAD Design 21 days Mon 10/17/16 Mon 11/14/16 Communicating with machine shop 52 days Thu 11/3/16 Fri 1/13/17 Web Design 25 days Wed 10/19/16 Tue 11/22/16 Begin Testing of Existing Design 38 days Wed 10/19/16 Fri 1/9/16 Order New parts 49 days Tue 11/1/16 Fri 1/9/16 Follow up meeting with Advisor/Supervisor 5 days Mon 11/14/16 Fri 1/18/16 Machine New Flow Configuations 5 days Mon 12/17 Fri 1/27/17 Components Specifications 7 days Mon 11/6/17 Tue 1/24/17 Finalize Kit 13 days Mon 12/17 Fri 2/10/17 Communication with Vendor 30 days Mon 12/17 Fri 2/10/17	Gain Access to CAPS Laboratory	9 days	Mon 10/10/16	Thu 10/20/16											
Communicating with machine shop 52 days Thu 11/3/16 Fri 1/13/17 Web Design 25 days Wed 10/19/16 Tue 11/22/16 Begin Testing of Existing Design 38 days Wed 10/19/16 Fri 12/9/16 Order New parts 49 days Tue 11/1/16 Fri 1/6/17 Follow up meeting with Advisor/Supervisor 5 days Mon 11/2/17 Fri 1/6/17 Fri 1/6/17 Fri 1/6/17 Test New Components 5 days Mon 1/2/17 Tom 1/2/17 Fri 1/22/17 Components Specifications 7 days Mon 1/6/17 Finalize Kit 13 days Mon 1/2/17 Fri 2/10/17 Communication with Vendor 30 days Mon 1/2/17 Fri 2/10/17	CAD Design	21 days	Mon 10/17/16	Mon 11/14/16											
Web Design 25 days Wed 10/19/16 Tue 11/22/16 Begin Testing Design 38 days Wed 10/19/16 Fri 12/9/16 Order New parts 49 days Tue 11/1/16 Fri 16/17 Follow up meeting with Advisor/Supervisor 5 days Mon 11/14/16 Fri 11/18/16 Machine New Flow Configuations 5 days Mon 1/2/17 Fri 1/27/17 Test New Components 15 days Mon 1/16/17 Fri 1/24/17 Finalize Kit 13 days Mon 1/2/17 Fri 2/10/17 Communication with Vendor 30 days Mon 1/2/17 Fri 2/10/17	Communicating with machine shop	52 days	Thu 11/3/16	Fri 1/13/17	1										
Begin Testing Design38 daysWed 10/19/16Fri 12/9/16Order New parts49 daysTue 11/1/16Fri 12/9/16Follow up meeting with Advisor/Supervisor5 daysMon 11/14/16Fri 11/18/16Machine New Flow Configuations5 daysMon 1/2/17Fri 1/6/17Test New Components15 daysMon 1/9/17Fri 1/27/17Components Specifications7 daysMon 1/16/17Tue 1/24/17Finalize Kit13 daysMon 1/2/17Fri 2/10/17Communication with Vendor30 daysMon 1/2/17Fri 2/10/17	Web Design	25 days	Wed 10/19/16	Tue 11/22/16	1										
Order New parts49 daysTue 11/1/16Fri 1/6/17Follow up meeting with Advisor/Supervisor5 daysMon 11/14/16Fri 11/18/16Machine New Flow Configuations5 daysMon 1/2/17Fri 1/6/17Test New Components15 daysMon 1/9/17Fri 1/27/17Components Specifications7 daysMon 1/16/17Tue 1/24/17Finalize Kit13 daysMon 1/16/17Wed 2/1/17Communication with Vendor30 daysMon 1/2/17Fri 2/10/17	Begin Testing of Existing Design	38 days	Wed 10/19/16	Fri 12/9/16	1								l i i i i i i i i i i i i i i i i i i i		
Follow up meeting with Advisor/Supervisor5 daysMon 11/14/16Fri 11/18/16Machine New Flow Configuations5 daysMon 1/2/17Fri 1/6/17Test New Components15 daysMon 1/9/17Fri 1/27/17Components Specifications7 daysMon 1/16/17Tue 1/24/17Finalize Kit13 daysMon 1/2/17Wed 2/1/17Communication with Vendor30 daysMon 1/2/17Fri 2/10/17	Order New parts	49 days	Tue 11/1/16	Fri 1/6/17	1										
Machine New Flow Configuations5 daysMon 1/2/17Fri 1/6/17Test New Components15 daysMon 1/9/17Fri 1/27/17Components Specifications7 daysMon 1/16/17Tue 1/24/17Finalize Kit13 daysMon 1/16/17Wed 2/1/17Communication with Vendor30 daysMon 1/2/17Fri 2/10/17	Follow up meeting with Advisor/Supervisor	5 days	Mon 11/14/16	Fri 11/18/16	1										
Test New Components 15 days Mon 1/9/17 Fri 1/27/17 Components Specifications 7 days Mon 1/16/17 Tue 1/24/17 Finalize Kit 13 days Mon 1/16/17 Wed 2/1/17 Communication with Vendor 30 days Mon 1/2/17 Fri 2/10/17	Machine New Flow Configuations	5 days	Mon 1/2/17	Fri 1/6/17	1										
Components Specifications 7 days Mon 1/16/17 Tue 1/24/17 Finalize Kit 13 days Mon 1/16/17 Wed 2/1/17 Communication with Vendor 30 days Mon 1/2/17 Fri 2/10/17	Test New Components	15 days	Mon 1/9/17	Fri 1/27/17	1										
Finalize Kit 13 days Mon 1/16/17 Wed 2/1/17 Communication with Vendor 30 days Mon 1/2/17 Fri 2/10/17	Components Specifications	7 days	Mon 1/16/17	Tue 1/24/17											
Communication with Vendor 30 days Mon 1/2/17 Fri 2/10/17	Finalize Kit	13 days	Mon 1/16/17	Wed 2/1/17											
	Communication with Vendor	30 days	Mon 1/2/17	Fri 2/10/17	1										

Table 3: Gantt Chart used to organize and plan project

Group 16 Slide 19 of 22

References

- 1. [4] Sommer, E.M., L.S. Martins, J.V.C. Vargas, J.E.F.C. Gardolinkski, J.C. Ordonez, and C.E.B. Marino. "Alkaline Membrane Fuel Cell (AMFC) Modeling and Experimental Validation." Journal of Power Sowers (2012): n. pag. Web. 25 Sept. 2016.
- Paulino, Andre L.R., Eric Robalinho, Edgar F. Cunha, Rainmundo R. Passos, and Elisabete I. Santiago. "Current Distribution on PEM Fuel Cells with Different Flow Channel Patterns." (n.d.): n. pag. Https://www.comsol.com/paper/download/181391/paulino_paper.pdf. CAPES (Coordenação De Aperfeiçoamento De Pessoal De N ível Superior) and CNPq (Conselho Nacional De Desenvolvimento Científico E Tecnológico, 2013. Web. 2016.
- 3. Anderson, Bryan, and James Richardson. "Educational Kit for Alkaline Membrane Fuel Cell (AMFC)." Senior Design Presentation. Famu FSu College of Engineering, Tallahassee. 2016. Lecture.
- 4. Keith, Jason M. CACHE Modules on Energy in the Curriculum Fuel Cells. Rep. Houghton: Michigan Technological U, 2009. Print

Questions

