Group 16

Design and Development of Optimized Flow Channels for an Alkaline Membrane Fuel Cell Educational Kit

Advisor/Sponsor: Dr. Juan Ordonez

Oluwafemi Ojo Tristan Walter Terry Grandchamps Trevor Gwisz

Presentation Overview

- **Project Goal Statement**
- **Brief Re-Introduction**
- ▶ Current Design
- **Functional Analysis**
- **Failure Analysis**
- ▶ Safety Analysis

Group 16

Slide 2 of 22

- Commercialization
- \blacktriangleright Plans for the Future

Goal Statement

▶ "Deliver a functioning educational alkaline membrane fuel cell kit that demonstrates the effects of flow configurations on the fuel cell's performance by the end of spring 2017 semester"

Group 16 Slide 3 of 22

Re-Introduction to AMFC Operation

- Converts chemical energy into electric potential energy
- \blacktriangleright Requires an electrolyte solution, hydrogen gas, and oxygen gas for operation
- Generates pure water and electricity
- No greenhouse gas emitted

Group 16

Slide 4 of 22

Fig. 1: Fuel Cell Operation

Current Set Up

- 200 mL Electrolysis Cylinders
- 1/8 in diameter exit
- 0.05" Wire to 9V battery
	- \blacktriangleright Producing a flow rate of 0.2678L/hr
	- Fluid Velocity of 0.036m/s
	- \blacktriangleright Very low feeding pressure and flow rate
	- \blacktriangleright Not optimal to study thermal fluids system

Fig. 2a: Electrolysis Cylinder

Fig. 2b: Electrolysis Operation

Tristan Walter Design and Development of AMFC Kit

Group 16 Slide 5 of 22

Parallel Configuration

- **Lowest pressure drop**
	- No minor losses
	- \blacktriangleright Multi-path design
- ▶ Does not require a high flow rate for operation
- Current max voltage 0.561V produced
	- \blacktriangleright Ideal 1.23V

Group 16

Slide 6 of 22

Fig. 3: Parallel Configuration

Tristan Walter Design and Development of AMFC Kit

Serpentine Configuration

 \blacktriangleright Higher pressure drop compared to parallel

- Minor losses-22 bends in current design
- ▶ One path continuous flow
- Steady contraction loss

Group 16

Slide 7 of 22

 \blacktriangleright Higher flow rate desired for optimal functionality

Fig. 4: CAD Serpentine Configuration

Tristan Walter Design and Development of AMFC Kit

Interdigitated Configuration

- Highest Pressure drop compared to parallel and serpentine design
	- Minor losses-22 bends
	- Dead Ends

Group 16

Slide 8 of 22

- **Forces fluid to lateral** diffuse over channel walls for high diffusion rate
- ▶ Potentially flooding
- \blacktriangleright High pressure drop
- Higher flow rate required for optimal functionality

Fig. 5a: Interdigitated Configuration flow

Dead

Design and Development of AMFC Kit

Effects of Low Flow Rate on High Pressure Drop **Configurations**

- Heat distribution and Heat transfer
	- **Fluid temperature will** dissipate quicker through system
	- **Max Heat ≈393.15 K** (Shown in Fig. 6 in red)
	- Why optimize?
		- \blacktriangleright Higher flow rates allow for higher heat transfer rates
		- \blacktriangleright High current density

Fig. 6: Thermal Imaging Interdigitated (left) Serpentine (Right)

Tristan Walter Design and Development of AMFC Kit

Group 16 Slide 9 of 22

Effects of Low Flow Rate on High Pressure Drop Configurations

- Low feeding pressure
	- ▶ Thermal fluids system has energy losses Head loss
	- Cannot overcome these losses to allow for fluids to move through system
- Low Reynolds number

Group 16

Slide 10 of 22

- ▶ Current set up produces RE=0.42
- No empirical formula to find appropriate friction factor
- Cannot study pressure drop in the thermal fluid system

$$
f = \frac{24}{\text{Re}} (1 - 1.3553a + 1.9467a^2 - 1.7012a^3 + 0.9564a^4 - 0.2537a^5) \text{Eqn. 2: R.K. Shah and A.L. London friction factor} \text{First an Walter of 22}
$$
\nDesign and Development of AMFC Kit

Tristan Walter

Eqn. 1: Reynolds Number

Analysis

- How much feeding pressure is required for a respectable flow rate?
	- \blacktriangleright New velocity selected to received respected RE
		- \triangleright 6.0 m/s results in RE = 56.45
		- R.K. Shah and A.L. London equation used for f
		- **Geankoplis table**
		- **Geankoplis friction loss**
		- ∆P=0.1663psi

Re 1 50 100 200 400 1000 Turbulent Table 1: **Geankoplis table of friction losses for non-tubulent flow**

K_f 17 7 2.5 1.2 0.85 0.75

$$
\sum F = \frac{V^2}{2} \left(\frac{4fL}{D_h} + K_f \right)
$$
Eqn. 3: Geankoplis friction

K Eqn. 3: **Geankoplis friction loss (Energy Balance)**

Eqn. 4: AP is proportional to the sum of frictional losses **F**

Eqn. 4: ΔP is proportional to the sum of frictional losses

Tristan Walter Eqn. 3: Geankoplis friction loss (Energy Balance
2P is proportional to the sum of frictional losses
2P is proportional to the sum of frictional losses
2P is proportional to the sum of frictional losses
2P is proportional t

Group 16 Slide 11 of 22

Results

- New flow rate of 1.2384 $*$ 10^{-4 $\frac{m^3}{2}$} $\overline{\mathcal{S}}$ (Fluid Velocity = 6.0m/s) results in ΔP=0.1663psi for current serpentine design
- **Must produce a feeding pressure > 0.1663psi**
	- **Increase Electrolysis reaction**
	- **Pump**

Tristan Walter Design and Development of AMFC Kit

Increasing Pressure and Future Steps

Increasing Electrolysis Reaction

- Add salt to distilled water in cylinders- increases conductivity
- \blacktriangleright Thicker wire- increases current
- Use larger battery- increases voltage
- ▶ Use pressure gage to measure if this pressure is achievable

Pump

Group 16

Slide 13 of 22

- \blacktriangleright Pump selection will allow for an exact desired flow rate
- \blacktriangleright Adds more components to system
- Electrolysis method cannot be used

Fig. 7: Pressure Gage used to measure pressure on cylinder

Tristan Walter Design and Development of AMFC Kit

Design for Commercialization

 \blacktriangleright Kit's main use is for educational use

- ▶ Easy to disassemble and replace with different flow plates
- \blacktriangleright Safe design
- \blacktriangleright Maximize simplicity and reliability of the design
- \blacktriangleright Transportability
- All parts and directions included

Trevor Gwisz Design and Development of AMFC Kit

Group 16 Slide 14 of 22

Failure Analysis

Table 2: Failure Analysis for educational kit

Trevor Gwisz Design and Development of AMFC Kit

Safety Analysis

- AMFC operates at max temperatures of 100°C 120°C
- Improving design to make more stable
- Prevent fuel cell from moving during operation

Group 16

Slide 16 of 22

Fig. 8: CAD drawing of fuel cell stand Fig. 9: CAD drawing of fuel cell in stand

Trevor Gwisz Design and Development of AMFC Kit

Maximizing Simplicity

- Old design relied on bolts for assembly
- New design assembled with quick release bicycle skewers
- Skewers will be customized in order to fit design

Fig. 10: Current design using bolts Fig. 11: Quick release skewer Fig. 10: CAD drawing of new design

Trevor Gwisz Design and Development of AMFC Kit

Group 16 Slide 17 of 22

Maximizing Testing Reliability

- Old Design relied on spliced wires to measure power generation
- Could produce inconsistent measurements
- New Design features integrated connection points to facilitate alligator clips

Group 16

Slide 18 of 22

Fig. 13: Current design wiring system Fig. 14: CAD drawing of end plate modification

Fig. 15: Alligator clips

Trevor Gwisz Design and Development of AMFC Kit

Gantt Chart

Table 3: Gantt Chart used to organize and plan project

Group 16 Slide 19 of 22

References

- 1. [4] Sommer, E.M., L.S. Martins, J.V.C. Vargas, J.E.F.C. Gardolinkski, J.C. Ordonez, and C.E.B. Marino. "Alkaline Membrane Fuel Cell (AMFC) Modeling and Experimental Validation." Journal of Power Sowers (2012): n. pag. Web. 25 Sept. 2016.
- 2. Paulino, Andre L.R., Eric Robalinho, Edgar F. Cunha, Rainmundo R. Passos, and Elisabete I. Santiago. "Current Distribution on PEM Fuel Cells with Different Flow Channel Patterns." (n.d.): n. pag. Https://www.comsol.com/paper/download/181391/paulino_paper.pdf. CAPES (Coordenação De Aperfeiçoamento De Pessoal De N ível Superior) and CNPq (Conselho Nacional De Desenvolvimento Científico E Tecnológico, 2013. Web. 2016.
- 3. Anderson, Bryan, and James Richardson. "Educational Kit for Alkaline Membrane Fuel Cell (AMFC)." Senior Design Presentation. Famu FSu College of Engineering, Tallahassee. 2016. Lecture.
- 4. Keith, Jason M. *CACHE Modules on Energy in the Curriculum Fuel Cells*. Rep. Houghton: Michigan Technological U, 2009. Print

Questions

